domingo, 25 de julio de 2010

Transiciones Termodinámicas y Coherencia de Fase en Superconductores de Alta Temperatura

Anisotropía

Una de las propiedades más destacables de los superconductores basados en óxidos de cobre es que tanto sus propiedades en el estado normal como las que corresponden al estado superconductor muestran una gran anisotropía. Esa anisotropía refleja aquella que se evidencia en la estructura atómica

Los datos experimentales indican que la conductividad eléctrica es mucho mayor en la dirección de los planos de Cu-O (dirección ab) que en la dirección perpendicular a ellos (dirección c). Tenemos así una resistividad ab y una c. Una forma de definir la anisotropía del material es a través del cociente de resistividades en sus direcciones principales h = c /ab. Estos valores cambian desde el que corresponde al YBa2Cu3O7 h50, considerado como moderadamente anisotrópico, hasta los que corresponden a los materiales de mayor anisotropía, como el Bi2Sr2CaCu2O8, en el cual el cociente h20.000 pone de manifiesto la anisotropía extrema que caracteriza a estos materiales. Hemos demorado el análisis de la influencia de la anisotropía, no porque su efecto sobre las propiedades que discutimos sea de carácter secundario sino por que la anisotropía esencialmente solo modifica cuantitativamente la manifestación de esas propiedades.

Para las anisotropías mayores, las propiedades físicas de los superconductores se pueden interpretar suponiendo que la superconductividad tiene un carácter cercano al bidimensional. La superconductividad se nuclea solamente en los planos de Cu-O. Las funciones de onda de los pares de Cooper en planos vecinos se superponen débilmente, permitiendo la existencia de efecto túnel (efecto Josephson) de pares entre planos. Este acoplamiento establece el carácter tridimensional del superconductor, induciendo la coherencia de fase en la dirección c.

La descripción teórica de la superconductividad en los sistemas laminares débilmente acoplados fue desarrollada por Lawrence y Doniach para describir el comportamiento de superconductores laminares convencionales, preparados artificialmente. Utilizando conceptos presentados en la teoría se puede interpretar algunas de las características cuasi-bidimensionales de los SAT. Resultados experimentales, que se discuten en este artículo muestran que aun el sistema YBa2Cu3O7 presenta características sólo esperables, de acuerdo a las concepciones teóricas aceptadas, en sistemas mucho más anisotrópicos. Creemos importante discutir resultados que se esperaría obtener en sistemas altamente anisotrópicos pues, a nuestro entender, ponen de manifiesto el comportamiento experimental, aun en sistemas que se consideran moderadamente anisotrópicos.

En una imagen laminar se considera que los planos superconductores se acoplan a través de láminas aisladoras. Dos tipos de corrientes superconductoras se pueden sostener en el sistema: las que circulan en los planos y asociadas a los correspondientes gradientes de la fase del parámetro de orden y las que, por efecto túnel, atraviesan los planos de Cu- O. En este último caso la corriente no está determinada por gradientes. El efecto Josephson explica el paso de corriente a través de junturas aisladoras, introduciendo una relación constitutiva no lineal entre la corriente y la diferencia de fase entre láminas. No puede haber corrientes determinadas por trayectorias que se localizan entre planos, pues no puede haber estados de pares con vida media infinita en la zona aisladora.



Un dibujo esquemático de cómo imaginamos un vórtice en un sistema bidimensional se muestra en la figura 2. Las corrientes se distribuyen en órbitas concéntricas sobre los planos, denominadas panqueques. Para minimizar la energía de línea del vórtice.

Los panqueques se colocan uno encima de otro. Si las corrientes no fuesen superconductoras, esta disposición determina unívocamente la dirección del campo. Como la distancia entre planos es mucho menor que la distancia l(T) 1500 Å donde circula la corriente el resultado sería una distribución de campo indistinguible de la que corresponde a un vórtice continuo. Sin embargo, hay que tener en cuenta la relación constitutiva que gobierna la corriente superconductora. Para que no circulen corrientes en la dirección del eje c y de esa forma minimizar la energía cinética y de campo es necesario tener la fase del parámetro de orden igual entre todos los planos que constituyen la muestra laminar. Esto es, la fase cambiará en 2 en cada capa tantas veces como vórtices haya pero entre planos la diferencia de fase debe anularse.

Como los fenómenos físicos correspondientes al equilibrio termodinámico se manifiestan minimizando la energía libre y no necesariamente la interna, nos vemos obligados a analizar las excitaciones en un sistema laminar. Vimos cómo la teoría imaginaba la introducción de excitaciones de flujo magnético, en forma de tiroides. Debemos pensar en formas similares que cumplan con los requerimientos de cuantificación de flujo, y que permitan introducir entropía en el sistema de panqueques. La forma más simple de introducir entropía en un sistema laminar es producir desplazamientos relativos entre panqueques en cada plano y de cada uno de ellos con relación a su vecino en el plano superior e inferior, ver fig. 2. Como al desplazarse las corrientes se introducen diferencias de fase entre planos, el desplazamiento irá acompañado de corrientes Josephson entre ellos. Como el flujo magnético debe ser conservado en forma de cuantos, las corrientes entre planos generan "vórtices Josephson" que interconectan los panqueques en los planos. Por comparación con la figura... lo que en ella eran desviaciones curvilíneas del vórtice se convierte aquí en desviaciones en forma de escalera, con dos tipos de corrientes. La energía de la excitación se compondrá de términos asociados a los panqueques y términos asociados a los tramos de vórtices Josephson.
Distinguir experimentalmente un sistema muy anisotrópico de uno laminar. es de hecho muy difícil, aunque conceptualmente son totalmente distintos. El sistema anisotrópico se describe a través de una anisotropía en los parámetros superconductores, indicando que cuesta menos energía distribuir corrientes en las direcciones ab que en c. Sin embargo un vórtice en la dirección ab tendrá corrientes superconductoras alrededor del núcleo que están contenidas en las regiones entre planos. La forma más segura de detectar un verdadero comportamiento laminar es realizar experimentos que pongan de manifiesto la existencia de junturas Josephson. Hasta ahora esto sólo se ha mostrado en los compuestos de Bi2Sr2CaCu2O8. Pese a ello, muchos resultados experimentales se pueden describir con mayor facilidad a través del modelo laminar.

Ahora que hemos discutido las características anisotrópicas de los superconductores, resulta evidente que cuanto más anisotrópico sea el superconductor más fácil será introducir excitaciones en forma de vórtices cerrados. Vemos así, la importancia que adquiere la constante C44 en la aproximación elástica del tratamiento de la interacción entre vórtices.


Fuente:  html.rincondelvago.com
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com

No hay comentarios:

Publicar un comentario