La transición termodinámica superconductor-normal de los superconductores tradicionales en Hc2(T) es de segundo orden y está bien descripta por teorías de campo medio. La zona crítica donde dominan las fluctuaciones tiene un rango de temperaturas tan angosto que no es alcanzable a través de experimentos.
El rol de los defectos estructurales del material es importante porque ellos determinan la capacidad de transportar corriente sin disipación. Sin embargo su contribución a las propiedades termodinámicas del estado superconductor es nula: tanto la temperatura crítica como la energía de condensación no varían con la presencia de defectos.
Los campos Hc1(T) y Hc2(T) pueden cambiar con la densidad de defectos, a través de la dependencia de los parámetros superconductores (T) y (T) del camino libre medio electrónico. Como las constantes elásticas de la red de vórtices dependen de los parámetros superconductores y estos pueden cambiar con la concentración de defectos es comprensible que las propiedades elásticas de la red cambien de acuerdo al tipo y concentración de defectos que tenga el material. Si bien los campos críticos cambian con los defectos, y consecuentemente el diagrama de fases H-T, no cambia la naturaleza de la transición de fase en el correspondiente Hc2(T), que sigue siendo bien descripta por las teorías de campo medio.
Las corrientes críticas del material superconductor dependen de la capacidad de los defectos estructurales para controlar el anclaje de los vórtices. En 1970 Larkin propuso la teoría de anclaje colectivo, en la cual los defectos de los materiales destruyen el orden cristalino de largo alcance de la red de vórtices. Esto ocurre como consecuencia de la competencia entre las interacciones entre vórtices y la energía que gana al situar a estos sobre los centros de anclaje. El aumento de la energía elástica de la red de vórtices, asociada a la deformación inducida por los centros de anclaje sobre la red, evita que estos optimicen la energía de interacción vórtice-defecto. Dentro de esa competencia y considerando la aproximación de Larkin, la estructura periódica no es estable, se pierde el orden de largo alcance y sólo quedan correlaciones posiciónales de vórtices con orden de corto alcance. Estas correlaciones no deben ser confundidas con las correlaciones de fase que se discuten en este artículo. La correlación posicional se define, siguiendo a Larkin, como la distancia que se recorre a partir de un origen arbitrario para detectar que un vórtice se ha desplazado elásticamente en un parámetro de red. Como la red de vórtices admite desplazamiento en la dirección paralela y perpendicular al campo se define un volumen de correlación. El volumen de correlación lleva asociada una energía elástica, producto de la deformación inducida por los defectos. En la teoría queda implícito que cuando las deformaciones excedan el parámetro de red se inducirán deformaciones plásticas que relajan la energía de deformación. En la teoría de anclaje colectivo la corriente crítica es inversamente proporcional al volumen de correlación. El efecto de la temperatura se manifiesta a través del comportamiento de las constantes elásticas y los potenciales de anclaje.
La posibilidad de que existiesen transiciones termodinámicas en la estructura de vórtices en el estado mixto de los SAT, inducidas por fluctuaciones térmicas, impulsó un enfoque completamente distinto del problema. En ese nuevo enfoque los defectos juegan un papel importante, de tal suerte que el estado fundamental de la estructura de vórtices queda determinado por el efecto combinado de la interacción vórtice-vórtice y vórtice-defecto. La teoría justifica la existencia de una transición de fase de segundo orden que separa un estado sólido a bajas temperaturas de un estado líquido a temperaturas mayores y predice la existencia de una zona crítica, donde las fluctuaciones determinan las propiedades físicas del sistema. Esta zona crítica es lo suficientemente amplia como para tener acceso a ella a través de experimentos. Los resultados experimentales verificaron la existencia de exponentes críticos y comprobaron que la descripción correcta del comportamiento fenomenológico de los SAT debía hacerse dentro de una teoría que fuese más allá de las limitaciones impuestas por aquellas basadas en la aproximación de campo medio.
Los experimentos de nuevo pusieron de manifiesto otros fenómenos peculiares de los SAT al descubrir que, dependiendo del tipo de defectos, existían transiciones de primer orden para el paso de líquido a sólido en la estructura de vórtices. Las primeras evidencias fueron reforzadas a través de nuevas mediciones de transporte, difracción de neutrones y magnetización en más de un superconductor de alta temperatura. No existe hasta ahora ninguna teoría que describa la transición de fase de primer orden.
Terminamos esta sección puntualizando las diferencias fundamentales entre los volúmenes de correlación que se describen en la teoría de Larkin y las correlaciones de fase que determinamos al hacer los experimentos con el transformador de corriente continua descriptos en este artículo. El volumen de correlación de Larkin surge de un análisis topológico de la distribución espacial de los vórtices. De hecho se basa en suponer que el estado fundamental es una red periódica de vórtices que se modifica por la presencia de defectos. Las fuerzas de anclaje actúan sobre constantes elásticas bien definidas que caracterizan la red periódica. En este tratamiento se da por sentado que la coherencia de fase se establece en volúmenes mayores que el volumen de Larkin: no se pueden definir constantes elásticas de la "red" superconductora en volúmenes en que no haya correlación de fase. De hecho, para corrientes menores que la crítica, en la imagen de Larkin, el volumen de correlación de fase es infinito.
Después de varios años de investigación y controversias se acepta que las características del estado mixto de los superconductores de alta temperatura, SAT, difieren cualitativamente de aquellas de los superconductores convencionales, SC . Las diferencias se ponen de manifiesto no sólo en aspectos cuantitativos asociados a valores particulares de los parámetros superconductores, sino a través de diferencias cualitativas en sus propiedades físicas e interpretaciones teóricas.
Como consecuencia, los superconductores basados en óxidos de Cu deben tratarse en un marco diferente al que proveen teorías de campo medio.
El comportamiento diferente de los SAT se debe al efecto combinado de su pequeña longitud de coherencia, (T), la relevancia de la contribución de fluctuaciones termodinámicas del parámetro de orden, y su gran anisotropía.
Después de aceptarse la existencia de una transición de fase termodinámica que separa una fase líquida de vórtices de una estructura sólida, se descubrió que el diagrama de fases H-T del estado mixto es más rico que lo que se creía en ese momento. Se determinó que la transición de líquido a sólido en muestras monocristalinas sin maclas, denominadas limpias, de YBa2Cu3O7- (YBCO) es una transición termodinámica de primer orden que ocurre a lo largo de una línea Tm(H) en el diagrama H-T. La presencia de maclas, muestras sucias, transforma la transición de primer orden en una de segundo, a la temperatura Ti(H).
Llama la atención que la estructura de vórtices de muestras limpias, tanto de YBCO (considerado como un SAT de moderada anisotropía, con un cociente de masas de 50) como de Bi2Sr2CaCu2O8 (BSCCO) (con > 104), presente la transición de primer orden termodinámico. El papel relevante que juega la anisotropía en los SAT, al permitir que las fluctuaciones térmicas sean importantes en las propiedades termodinámicas, es reconocido. Sin embargo, no es fácil comprender por qué variaciones de la anisotropía en varios órdenes de magnitud no cambian la naturaleza de la transición de fase líquido-sólido, cuando sí lo hace la presencia del desorden topológico introducido por las maclas en YBCO. En consecuencia, es importante preguntarse qué papel desempeña el desorden topológico y cómo compite con la anisotropía de los superconductores para cambiar cualitativamente el diagrama de fases del estado mixto.
Las mediciones de transporte utilizando la configuración de contactos del transformador de corriente continua son de particular importancia en el estudio de la correlación de la fase superconductora en la dirección del eje c cristalográfico (consideramos al campo magnético aplicado en la dirección c). Usaremos los datos provistos por esta técnica para realizar un estudio comparativo de las funciones de correlación de la fase del parámetro de orden en muestras con maclas y libres de ellas. La técnica experimental utilizada y las características de las muestras han sido descritas en varias publicaciones .
En la figura se muestran resultados de mediciones de voltaje a corriente constante en función de temperatura, utilizando la configuración del transformador, en muestras monocristalinas de YBCO con maclas. La configuración de contactos se puede ver en la misma figura. El campo aplicado es en este caso 10kOe. Los voltajes se inducen con corrientes lo suficientemente bajas para asegurar respuesta lineal .
Los resultados muestran que la transición de segundo orden de líquido a sólido en Ti(H) va acompañada de la consabida disipación (resistencia finita) en el plano ab y que los voltajes en la cara superior (Vtop) y en la cara inferior (Vbot) coinciden para temperaturas superiores a Ti(H). Al alcanzar una temperatura Tth(H) se observa que Vtop Vbot. Esta diferencia aumenta con temperatura y persiste al alcanzar el estado normal en T = Tc. Para T > Tc la diferencia de voltajes queda determinada por la distribución inhomogénea de corrientes asociada a la configuración de contactos utilizada y la resistividad del material en el estado normal.
La diferencia entre los voltajes de la cara superior e inferior de la muestra, en el rango de temperaturas Tth < T < Tc, indica que el sistema es disipativo en el eje c. Teniendo en cuenta que los datos se toman en el régimen de respuesta lineal concluimos que la resistencia en las direcciones ab y c es una propiedad intrínseca, no inducida por la presencia de la corriente. En este sentido podemos asegurar que para T > Tth(H) el líquido de vórtices pierde la correlación de fase en todas las direcciones: no hay superconductividad (no hay estado de resistencia nula). Los resultados muestran que la presencia de una densidad finita de pares de Cooper e incluso la presencia de vórtices no implica superconductividad. Es importante preguntarse si hay una o dos temperaturas a las cuales se establecen la superconductividad.
Fuente: html.rincondelvago.com
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com
No hay comentarios:
Publicar un comentario