domingo, 25 de julio de 2010

DESARROLLAN TECNOLOGIAS DE SUPERCONDUCTIVIDAD MAS EFICACES Y BARATAS

11 de junio 2010. Investigadores de la Universidad de Liverpool y la Universidad de Durham han puesto una nueva pieza en el rompecabezas que podría ayudar a la superconductividad en la búsqueda de reducir el costo de las tecnologías tales como escáneres de resonancia magnética y algunas aplicaciones de almacenamiento de energía que dependen de los superconductores. El resultado se publica en la revista en línea de Nature.

Mediante Muones implantados en la cara cúbica centrada en el Cs3C60 del ISIS y el uso de las instalaciones del Laboratorio Rutherford Appleton STFC (RAL) y el European Synchrotron Radiation Facility (ESRF) en Grenoble, los científicos han demostrado que un nuevo material hecho a partir de átomos de metal y buckyballs (diminutos moléculas de carbono-60 en forma de una pelota de fútbol) se convierte en un superconductor de alta temperatura cuando está roto. La aplicación reduce la presión de la estructura y vence la repulsión entre los electrones, lo que permite al par eléctrico viajar a través del material sin resistencia.




El Liverpool y los investigadores de Durham construyeron el nuevo material con el apoyo de fondos de la Ingeniería y Ciencias Físicas del Consejo de Investigación (EPSRC) para un programa de investigación para crear mayores superconductores de alta temperatura, y así reducir algunos de los costos involucrados con el mantenimiento de ellos en su temperatura óptima y ampliar sus aplicaciones. Un escáner de resonancia magnética por ejemplo, contiene imanes superconductores del tamaño de una persona que necesita ser mantenido dentro de un baño de helio líquido a fin de regular la temperatura del superconductor a – 270 ° C. El objetivo final es que un superconductor pueda funcionar a temperatura ambiente para eliminar la necesidad de costosos y y grandes sistemas de refrigeración .

El Dr. Peter Baker, científico del instrumento de muones en ISIS STFC dice: “Esta investigación sugiere que hay una tendencia universal hacia la temperatura alta en materiales superconductores, que es un gran paso adelante en la comprensión de la naturaleza fundamental de la superconductividad. Una vez que sabemos cómo funciona la superconductividad, será más fácil el desarrollo de materiales superconductores de alta temperatura con propiedades específicas, abriendo la puerta a nuevas aplicaciones y la transmisión de energía ultra eficiente “.

La ventaja de la investigación de materiales superconductores basados en el carbono es que se puede hacer con diferentes estructuras que alteran sus propiedades y que los componentes activos de otros superconductores de alta temperatura, tales como materiales de óxido de cobre, están siempre dispuestos en un camino. Esta flexibilidad estructural ofrece una nueva manera de ver los mecanismos que conducen a la superconductividad de alta temperatura, ofreciendo una visión más clara de cómo construir superconductores de temperatura más alta. También ha establecido un patrón universal en la superconductividad de materiales basados en carbono que ahora se puede utilizar para ayudar a guiar el futuro los modelos teóricos de la superconductividad.
Mateo Rosseinsky, Catedrático de Química Inorgánica de la Universidad de Liverpool, dijo: “Hemos demostrado por primera vez cómo el control de la disposición de las moléculas en un superconductor de alta temperatura controla sus propiedades. Esto es posible porque hemos encontrado dos acuerdos de la misma unidad básica molecular que tienen propiedades magnéticas superconductoras. ”

Kosmas Prassides, Profesor de Química, Universidad de Durham, dijo: “Esto es importante en el contexto de la superconductividad de alta temperatura, ya que nos permitió ver en que punto de la superconductividad emerge fuera del estado de aislamiento en competencia con independencia de la estructura atómica exacta – algo que no ha sido posible antes de cualquier otro material conocido “.

Fuente:http://universitam.com
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com/

Nueva familia de superconductores

Logran sintetizar diversos compuestos de una nueva familia de superconductores de alta temperatura crítica. Quizás ayuden a explicar este fenómeno superconductivo o proporcionen nuevas aplicaciones prácticas.


Los superconductores son materiales que conducen la corriente eléctrica sin pérdida cuando están por debajo de cierta temperatura. Los superconductores tradicionales realizan esto cuando su temperatura está muy cerca del cero absoluto. Pero en 1986 se descubrió una familia de superconductores basada en cupratos (óxidos de cobre), como el YBaCuO, que hacían esto mismo a una temperatura relativamente alta (hasta la última marca de 138 K), de tal modo que bastaba nitrógeno líquido (que hierve a 79 K) para que se tornaran superconductores. A pesar de su naturaleza cerámica y lo difícil que es trabajar con ellos se han encontrado algunas aplicaciones prácticas a los mismos.

Se cree que los planos de cobre-oxígeno del YBaCuO son los que proporcionan la superconductividad a este tipo de materiales. Pero la explicación última del mecanismo que hay detrás de estos materiales y que les hace superconductores a alta temperatura (relativa) ha traído de cabeza a los físicos desde entonces. Todavía hoy día no hay unanimidad a la hora de explicar su comportamiento, siendo uno de los grandes misterios que hay actualmente en Física.

Ahora investigadores japoneses y chinos han descubierto una nueva familia de superconductores de alta temperatura de una composición distinta. Quizás estos nuevos materiales, aunque de menor temperatura crítica (de momento), puedan ayudar a entender este fenómeno.

También hay físicos teóricos afirmando que la importancia de la nueva familia será más relevante si se comportan de un modo distinto a los cupratos, ya que si hubiera un nuevo mecanismo detrás del fenómeno de la superconducción sería más fascinante a los ojos de estos.

La superconductividad tradicional (descubierta en 1911) puede explicarse mediante la existencia de pares de Cooper. Cuando las temperaturas son muy bajas aparecen los pares de Cooper. Éstos son asociaciones de dos electrones que se mantienen unidos gracias a fonones, que son vibraciones de la red. La atracción mediada por fonones entre estos electrones de spines opuestos es mayor que la repulsión entre sus cargas.

Los pares de Cooper son bastante más grandes que el espaciado interatómico de la red cristalina y todos ellos se comportan como un todo que puede avanzar a través de la red sin esfuerzo, por lo que la resistencia eléctrica desaparece. Los fonones son por tanto fundamentales para la superconducción tradicional. A una temperatura relativamente alta (a la temperatura crítica) se terminan destruyendo todos los pares de Cooper y, por tanto, el estado superconductor desaparece.

Pero este mecanismo de fonones no puede explicar los superconductores basados en cupratos que desde hace más de 20 años se viene estudiando. Recientemente se ha propuesto que para estos materiales la superconductividad no está mediada por fonones.

En los nuevos materiales no hay cobre (algún investigador ha exclamado que se ha “liberado” de la “tiranía” del cobre en un ataque de excitación), aunque se parecen de algún modo a aquellos, pues la nueva familia tiene planos conductores, aunque de hierro-arsénico.

El pasado 23 de febrero Hideo Hosono del Instituto de tecnología de Tokio informó en la revista de la Sociedad Americana de Química que un compuesto de lantano, oxígeno, flúor, hierro y arsénico (LaO1-xFxFeAs) se volvía superconductor por debajo de 26 grados Kelvin.

El equipo chino, dirigido por X.H. Chen, de la Universidad de Hefei informó el pasado 25 de Marzo que un compuesto de samario, oxígeno, flúor, hierro y arsénico (SmO1-xFxFeAs) tenía una temperatura crítica de 43K. Tres días más tarde Zhong-Xian Zhao afirmaba haber encontrado un compuesto de praseodimio (PrO1-xFxFeAs) con una temperatura crítica de 52 kelvins. Y el pasado 13 de abril este mismo grupo entraba una temperatura crítica de 55 kelvins en este último compuesto cuando era sometido a presión.

Estos nuevos materiales tiene una estructura cristalina muy similar y los cálculos sugieren que las vibraciones de la red o fonones no proporcionan el mecanismo superconductivo.

El descubrimiento de esta nueva familia ha cogido por sorpresa a los investigadores del campo, ya que la naturaleza magnética del hierro debería de interferir en la formación de pares de Cooper. Quizás las fluctuaciones del spin jueguen un papel importante en este caso como se cree que lo hace en los cupratos, aunque quizás en este caso este mecanismo no sea suficiente. Otras especulaciones (de momento no hay otra cosa) hablan de fluctuaciones orbitales.

La cuestión es si estos superconductores se comportan de la misma manera en la que lo hacen los superconductores basados en cupratos. Ambos tienen estructuras planares por donde circulan los electrones, exhiben antiferromagnetismo y son malos conductores por encima de la temperatura crítica, pero el estado electrónico de los nuevos surge de dos electrones de los iones de hierro en lugar de uno en los iones de cobre.

La síntesis de estos materiales y los que quedan por llegar traerá sin duda mucha excitación al mundillo de la superconductividad. Además de hacernos pensar sobre la naturaleza de la superconductividad a alta temperatura, este descubrimiento nos haga plantearnos si hay otras familias de superconductores de alta temperatura que funcionen a temperaturas muy superiores.

Una ventaja de los nuevos superconductores es que son más fáciles de fabricar y manufacturar que los cupratos, cuya naturaleza cerámica les confiere mucha fragilidad. Los avances en superconductores basados en cupratos han sido muy pocos en los últimos años. Si se aumentara la temperatura crítica en los recientemente descubiertos desbancarían a los cupratos como materiales comerciales. Incluso se podría soñar con trenes de levitación magnética comerciales viables económicamente, envío de energía eléctrica a gran distancia sin perdida, etc.

Mientras tanto siempre podremos soñar con superconductores a temperatura ambiente.

Fuente: http://neofronteras.com/
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com

Superconductores podrían simular el cerebro

Es el hallazgo de científicos de los EEUU, que han demostrado cómo las redes de neuronas artificiales con dos uniones Josephson pueden superar a las computadoras más tradicionales de simulación de cerebros en muchos órdenes de magnitud.

El estudio de sistemas basados em estas junturas podría mejorar nuestra comprensión del aprendizaje a largo plazo y la memoria junto con los factores que pueden contribuir a trastornos como la epilepsia.

El cerebro humano consta de unos 100.000 millones de células nerviosas conocidas como neuronas, cada una de ellas recibe como entrada señales eléctricas de una cantidad de sus vecinas y luego envía una salida eléctrica a otras —un proceso conocido como “encendido” o “disparo” (”firing” en inglés)— cuando la suma de sus entradas supera un cierto nivel. A las conexiones entre las neuronas se las conce como sinapsis, y es la ponderación relativa de esto lo que determina cómo procesa la información el cerebro.

Una manera de simular el funcionamiento del cerebro es el uso de software. Por ejemplo, el proyecto Blue Brain de la Escuela Politécnica Federal de Lausana, en Suiza, involucra la simulación en preciso detalle biológico de 10.000 neuronas que componen la columna neocortical, bloque de construcción de la corteza cerebral o materia gris.

El problema de la falta de velocidad

Un inconveniente fundamental con esta manera de hacerlo es la velocidad. Las neuronas y sus conexiones existen en código informático, lo que significa que el sietam deberá ser simulado de forma secuencial. Esto requiere un importante poder de computación y los medios las simulaciones toman mucho más tiempo en ejecutarse que los procesos cerebrales reales. La alternativa es crear un análogo de la física del cerebro, haciendo que neuronas artificiales y conectándolas en paralelo. Una forma de hacerlo es crear neuronas usando transistores y luego explotar las técnicas de fabricación de microchips existentes para crear grandes redes neuronales. Desafortunadamente los transistores no tienen la linealidad entre intensidad y tensión que caracteriza a las neuronas, y reproducir este comportamiento implica conectar al menos el 20 transistores por cada neurona.
Las junturas Josephson, en cambio, son inherentemente no lineales y mucho más rápidas que los transistores, con una respuesta a un cambio en la entrada de alrededor de 10-11 s en lugar de los 10-9 s típicos en los transistores. Las junturas constan de dos capas superconductoras separadas por un espacio aislante, que es lo suficientemente delgado como para permitir las cargas pasen a través por efecto túnel y acoplen las funciones de onda de los dos superconductores. Las pequeñas corrientes no producen ningún voltaje sobre la brecha (este es la “supercorriente”, que no encuentra ninguna resistencia), mientras que corrientes más grandes resultan en voltajes progresivamente mayores. Fundamentalmente, las corrientes intermedias provocar un pulso de voltaje de corta duración, que es el equivalente del disparo de las neuronas.

Ahora Patrick Crotty, Dan Schult y Ken Segall de la Colgate University en los EE.UU. han elaborado las matemáticas de una neurona artificial que consta de dos uniones Josephson y tres inductores, unidos a una sinapsis artificial que consiste en un inductor, un capacitor y un par de resistencias.

Tres características vitales

Las dos junturas corresponden a dos canales de iones diferentes en una neurona, uno responsable de iniciar el pulso de voltaje, mientras que el otro devuelve la neurona a su potencial de reposo. Crotty y sus colegas han demostrado que este sistema comparte tres características esenciales de una neurona real. Además de dusparar, este disparo sólo se produce cuando la corriente supera un cierto valor mínimo. Además, la neurona artificial, como una neurona real, debe descansar durante un cierto período de tiempo después de disparar y antes de poder dispararse de nuevo.

El equipo analizó cuánto más rápido podía dispararse esta neurona basada en junturas Josephson que las neuronas que se imitan en una cantidad de modelos de software diferentes, suponiendo que estos modelos se ejecutan en un equipo que puede realizar mil millones de operaciones de punto flotante por segundo.

Encontraron que las neuronas individuales del dispositivo se pueden disparar unas 100 veces más rápido que el tipo más simple de neurona simulada. Pero esta ventaja, dicen los investigadores, sería mucho más pronunciada si se conectan entre sí un gran número de neuronas en una red. Ellos calculan que para 1.000 neuronas interconectadas, su disposición sería al menos 10 millones de veces más rápida.

Planificación de experimentos

El trabajo actual es puramente teórico, pero el grupo está comenzando a diseñar las redes de neuronas con la juntura Josephson en algunos prototipos iniciales de experimentos. Segall dice que a la larga debería ser sencillo fabricar chips con alrededor de 10.000 neuronas de juntura Josephson (suficiente para una columna neocortical), dado que ya se han producido circuitos similares con una cantidad doble de junturas. Incluyendo varios de estos chips juntos debería permitir a los investigadores estudiar determinados fenómenos colectivos neurales, tales como grupos de gran cantidad de neuronas disparándose en pasos, o sincronizándose, lo que podría resultar útil para combatir la epilepsia, dado que esta condición es causada por una sincronización no deseada.

El diseño actual no permite el aprendizaje debido a que la ponderación de las conexiones entre las sinapsis no se puede cambiar con el tiempo, pero Segall cree que si se puede agregar esta característica, entonces sus neuronas podría permitir que una vida entera de aprendizaje se simule en cinco o diez minutos. Esto, añade, debe ayudarnos a comprender cómo cambia el aprendizaje con la edad y puede darnos pistas sobre cómo se desarrollan los trastornos a largo plazo, como la enfermedad de Parkinson.

Henry Markram, el biólogo que dirige el proyecto Blue Brain, dice que el trabajo del grupo estadounidense “puede tener aplicaciones interesantes para las redes neuronales artificiales”, pero cree que es menos útil para la reproducción de los circuitos del cerebro real. Esto es, dice, en parte porque a las neuronas de junturas Josephson les faltan las dendritas y axones que conectan entre sí a las neuronas reales. También señala que sería mucho más difícil monitorear neuronas individuales que en las simulaciones por ordenador, limitando este enfoque a los fenómenos que se caracteriza por los valores del sistema en conjunto, como los datos de las mediciones del electroencefalograma.



Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com

En la búsqueda de superconductores que ayuden al ahorro de energía

De conocerse a ciencia cierta el comportamiento del fenómeno de la superconductividad de alta temperatura, en el futuro sería posible desarrollar un sinnúmero de innovaciones tecnológicas que contribuyan a fines ecológicos, como transformadores de alto rendimiento, dispositivos de almacenamiento de energía, motores eléctricos e implementos de telefonía celular.

Pieza clave en el desarrollo de estos avances son los superconductores, materiales que permiten transportar energía sin pérdida alguna. Mediante su empleo en el área de sistemas computacionales, podrían incluso diseñarse modernas máquinas que una vez encendidas no necesitarían ser apagadas.

En ello radica la importancia de la investigación que lleva a cabo el profesor de la Universidad Juárez Autónoma de Tabasco (UJAT), Manuel Acosta Alejandro: “Estructura atómica y densidad local de sistemas intermetálicos”, el cual es financiado por el Consejo Nacional de Ciencia y Tecnología.

El doctor en Ciencias con especialidad en Física Teórica sostiene que en la actualidad, el tema de la conciencia energética es ya una necesidad urgente y de carácter global, por lo que expertos de todo el planeta enfocan su interés en los cambios y avances que se generan en el área.

Explica que una de las características principales de los superconductores es que la mayoría de ellos adquieren esta propiedad sólo a temperaturas extremadamente bajas, lo que significa una desventaja por las condiciones climatológicas y geográficas que imperan en diversas partes del mundo, como Tabasco por ejemplo.

“Para contrarrestar esta tendencia, lo que hacemos en la UJAT, en la División Académica de Ciencias Básicas, es identificar superconductores que funcionen a altas temperaturas, es decir, estudiamos el compartimiento de materiales intermetálicos que funcionan a temperaturas elevadas y que derivan en un consumo menor de energía”, plantea.
En ese sentido, el profesor investigador de la UJAT y miembro activo del Sistema Nacional de Investigadores, asegura que si se logra descifrar el mecanismo de la superconductividad de alta temperatura crítica, el desarrollo de adelantos tecnológicos se verá favorecido en gran medida.

“Hoy en día hay muchos especialistas que ya trabajan en el tema, además de la Teoría BCS, que recibe su nombre de las iniciales de quienes la idearon: John Bardeen, Leon Cooper, y John Robert Schrieffer”, indica.

En su caso, Acosta Alejandro utiliza la Técnica de Espectroscopía de Absorción de Rayos X, que permite estudiar microscópicamente dichos materiales. “En México no se tienen los equipos adecuados para hacer este tipo de mediciones, así que las muestras creadas en la DACB se llevan a centros especializados de Estados Unidos, donde las analizamos con el apoyo de pares académicos”, dice al tiempo de exhortar a las autoridades estatales y federales a invertir más en ciencia y tecnología.



Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com

Los superconductores en la ciencia ficción

Podría pensarse que una tecnología tan absolutamente innovadora como la superconductividad habría sido ampliamente utilizada en la ciencia ficción... pero en la práctica no es así. Por supuesto, obras en las que se comenta que tal o cual cachivache utilizan dispositivos superconductores no son raras. Pero si lo que se pide es que la superconductividad sea un elemento decisivo de la trama prácticamente pueden contarse con los dedos de una mano... y sobran dedos. Debido a esto se aprecian mejor obras como el relato "Cruzada", de Arthur C. Clarke. En un mundo situado entre dos galaxias, a una temperatura por debajo del punto de licuefacción del helio, aparece una inteligencia basada en la superconductividad. Una inteligencia que no ve con buenos ojos a las inteligencias orgánicas, moviéndose en ambientes de alta temperatura y que mantienen esclavizadas a las pobres computadoras y decide iniciar su propia cruzada liberadora...

Otro libro emblemático en el que la superconductividad juega un papel importante es "Mundo Anillo" y especialmente su continuación "Los Ingenieros de Mundo Anillo", de Larry Niven. El colapso de la sociedad del fabuloso Mundo Anillo vino propiciado por una degeneración de los sistemas electrónicos y de generación de energía... debido a la contaminación por un hongo de los superconductores que utilizaban. Teniendo en cuenta que la novela fue escrita en 1970, demuestra una notable capacidad de anticipación en la utilización de superconductores de temperatura ambiente.

En la misma linea, la civilización alienígena de "La paja en el ojo de Dios", de Niven y Pournelle tiene uno de sus pilares en la existencia de superconductores que funcionan a temperaturas biológicas... e incluso pueden ser utilizados como pintura. Aparecen también algún que otro tipo de material exóticos, como por ejemplo superconductores de calor o superfricción.

La superconductividad en cuanto a mecanismo para la generación de enormes campos electromagnéticos es utilizada por Gregory Benford en su relato "Efectos Relativistas", en el que se describe con todo lujo de detalles la estructura y el funcionamiento de una nave estatocolectora... que utiliza superconductores de alta temperatura para la generación de las fuerzas hidrodinámicas que actúan como colector de materia para el motor de la nave. Esta misma tecnología se utiliza también en "Tau Cero", de Poul Anderson, aunque aquí empleando superconductores clásicos refrigerados por helio.
Otro elementos de la ciencia ficción en los que la superconductividad no es un lujo son los ascensores espaciales. En efecto, en un ascensor son necesarios superconductores para el transporte de energía (las perdidas en un cable de 36.000 Km podrían resultar impresionantes), para mover los vagones del sistema de transporte (por medio de un acelerador lineal, semejante a los trenes MAGLEV a los que hicimos referencia mas arriba) o incluso para el acoplamiento del cable: en "Marte Rojo", de Kim Stanley Robinson se utiliza un enlace dinámico de tipo electromagnético en el que los campos implicados requieren sin duda alguna el uso de superconductores...

Los dispositivos de interferencia cuántica o SQUID son descritos magistralmente por William Gibson en su clásico relato "Johnny Mnemónico" (del que partió la película del mismo nombre). En este cuento aparece un delfín, veterano de guerra, dotado de un dispositivo SQUID (en la nefasta traducción del cuento "calamar") para la detección de minas y submarinos enemigos... que también puede ser utilizado para leer la clave implantada en el cerebro de un correo cargado con información altamente reservada y peligrosa. Estos dispositivos también aparecen en la película "Días Extraños", donde un dispositivo SQUID con superconductores de temperatura ambiente se utiliza para grabar y reproducir digitalmente experiencias personales directamente desde el cerebro humano... dando lugar a un productivo mercado negro de sexo, sensaciones y emociones.

Por ultimo, en el relato "Armaja Das" de Joe Haldeman aparecen ordenadores superavanzados que utilizan superconductores clásicos (mercurio refrigerado por helio) en su CPU: al final resultan ser tan sumamente avanzados que son sensibles a las maldiciones y el mundo acaba por destruirse por su culpa.



Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com

Los superconductores aplicados a la Electrónica, Electricidad y Sistemas de Potencia

Electrónica

La superconductividad promete adelantos muy significativos en la industria electrónica. Ya existen muchas aplicaciones prácticas en la electrónica de superconductores que se han llevado a cabo con éxito. Sin embargo, aún quedan muchos problemas por resolver, especialmente con la nueva generación de superconductores.

La aplicación mas importante sin duda está orientada al mejoramiento de los circuitos integrados, ya que cuanto mayor es el número de componentes que pueden ser empacados juntos en un mismo circuito integrado, menor es el tiempo que necesita una señal eléctrica para viajar de un componente a otro. Esto permite a los circuitos integrados funcionar a velocidades mucho mayores que los circuitos con elementos discretos. Los Ics actuales operan a velocidades extremadamente altas, lo que ha generado un nuevo problema.

Los componentes de los circuitos integrados son capaces de operar a velocidades superiores a las que una interconexión puede transmitir la señal eléctrica de un componente a otro. Las interconexiones llevan la señal y la potencia eléctricas a los distintos componentes del IC.

Los superconductores serían un material ideal para hacer interconexiones. Dado que carecen de resistencia eléctrica, pueden disminuir notablemente la disipación de calor que se produce en los circuitos integrados y transistores.
Los superconductores podrían también aportar ventajas adicionales, tales como la eliminación de los problemas causados por las interferencias magnéticas, debido a su peculiar propiedad de repeler campos de este tipo.

Empleando conexiones superconductoras se podrían empacar los componentes mas juntos, permitiendo también aumentar el numero de componentes en un solo circuito integrado.



Electricidad y Sistemas de Potencia

Una de las aplicaciones de la superconductividad que se predijo con mas antelación es el área de los sistemas eléctricos de potencia. Hace ya tiempo que los ingenieros y científicos confían que algún día los superconductores mejorarán los sistemas de potencia, aumentando su eficacia en la generación, distribución y consumo de electricidad, con un importante beneficio económico como resultado.

Los sistemas eléctricos de potencia abarcan todos los sistemas utilizados para producir y distribuir electricidad. Desde los generadores en las centrales eléctricas hasta los consumidores individuales, pasando por la red de distribución, la superconductividad podría ahorrar mucha energía y dinero frente a los sistemas convencionales. Unos generadores que tuvieran bobinados de hilos superconductores en lugar de hilos convencionales de cobre podrían generar la misma cantidad de electricidad con menor trabajo y equipamiento mas pequeño. Una vez generada la electricidad, podría distribuirse a través de una red de líneas de alta tensión superconductoras. Los sistemas actuales de distribución gastan hasta el 20 por 100 de la energía que reciben a causa de su resistencia.
La energía que llega al consumidor podría ser utilizada mas eficientemente si los electrodomésticos tuvieran motores con bobinados superconductores y circuitos electrónicos con materiales del mismo tipo.

Actualmente, un cable superconductor necesita de una cubierta refrigerante a su alrededor para mantenerlo a una temperatura inferior a la temperatura crítica del material que lo forma.

Con respecto a la construcción mecánica existen tres tipos de cables superconductores:

1. Rígidos. El aislamiento y el superconductor se fabrican con tubos rígidos. La longitud máxima transportable es de 20 metros, Además Se necesitan componentes corrugados para compensar las contracciones térmicas.

2. Semiflexibles. En este caso el conductor es flexible y puede consistir en un tubo corrugado, o con alambres doblados en forma helicoidal sobre un soporte cilíndrico hueco. Estos cables superconductores pueden fabricarse en longitudes de 200 a 500 metros.

3. Completamente flexibles. En este tipo de cable el aislamiento térmico también es flexible. El cable está construido con tubos corrugados, de manera que no hay problemas con respecto al transporte y las contracciones térmicas.

Fuente: html.rincondelvago.com
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com

La superconductividad en la medicina

La mayoría de las aplicaciones actuales de la superconductividad se encuentran en los campos de la ciencia y la medicina. Históricamente la ciencia ha sido la primera en aprovechar la tecnología de superconductores. Los dispositivos desarrollados hasta ahora han dado lugar a importantes avances en la comprensión científica de la superconductividad, y lo que están en fase de desarrollo prometen enseñarnos mucho mas.

En la ciencia, la superconductividad se emplea en investigaciones teóricas y aplicadas, al igual que en instrumental de laboratorio y otros dispositivos. Las aplicaciones de la superconductividad no están limitadas a ningún área específica de la ciencia. La superconductividad ha entrado en el mundo de la medicina, proporcionando nuevos métodos y mas fiables en exploraciones médicas, diagnósticos y tratamiento de pacientes.

Sin duda la aplicación mas importante es la obtención de imágenes por resonancia magnética cuyas siglas en inglés son (MRI). Los métodos emplean esta expresión para designar una técnica científica llamada Espectroscopia por resonancia magnética nuclear (NMR). MRI es , en esencia, un método no invasivo que permite observar el interior del cuerpo humano.

MRI es una técnica de diagnóstico por imagen que utiliza los principios de la resonancia magnética nuclear (RMN). Aunque las imágenes de resonancia magnética se han producido en las dos últimas décadas, la investigación básica en este campo se inició en las décadas de 1930 y 1940, y comprendió investigaciones fundamentales de físicos sobre la interacción del núcleo atómico con campos magnéticos. Hacia 1950 se desarrolló la física básica sobre la que se apoyaban las imágenes de resonancia magnética. Sin embargo, se precisaron otras tres circunstancias: la disponibilidad de un ordenador o computadora potente y rápido, el desarrollo de un imán estable del tamaño del cuerpo humano con radiofrecuencias electrónicas asociadas, y la idea de que se podían obtener imágenes del interior humano con fines diagnósticos. P. C. Lauterbur, Raymond Damadian y Peter Mansfield demostraron la posibilidad de llevar a cabo esta idea empleando los principios físicos de la resonancia magnética nuclear. Las primeras imágenes de resonancia magnética se publicaron a principios de la década de 1970 y sus aplicaciones médicas se han acelerado en laboratorios y centros médicos de todo el mundo desde 1983 hasta 1993.

El observador ocasional se puede ver desbordado por la multitud de técnicas de imagen médicas y aplicaciones disponibles utilizando las imágenes de resonancia magnética. La resonancia magnética es considerada por muchos como la modalidad de diagnóstico por imagen más versátil, poderosa y sensible disponible en la actualidad. Su importancia médica se puede resumir brevemente como la capacidad de generar finas secciones de modo no invasivo, imágenes funcionales de cualquier parte del organismo desde cualquier ángulo y dirección en un periodo relativamente corto. Además, las recientes técnicas han permitido la visualización del corazón con exquisito detalle anatómico desde cualquier ángulo y dirección empleando la técnica del trazado electrocardiográfico. Otros avances en esta técnica permiten la visualización de las arterias y venas empleando la técnica denominada angiografía por resonancia magnética. Es más, las imágenes espectroscópicas de resonancia magnética permiten rastreos de componentes bioquímicos que corresponden a cualquier corte anatómico del cuerpo humano. Esto produce una información biomédica y anatómica básica con un gran potencial para el conocimiento fundamental y el diagnóstico precoz de múltiples enfermedades.

El principio de la resonancia magnética es aplicable al cuerpo humano porque está lleno de pequeños imanes biológicos, de los cuales el más abundante y que mejor responde es el núcleo del átomo de hidrógeno, el protón. Los principios de la resonancia magnética tienen ventaja sobre la distribución aleatoria de protones que poseen propiedades magnéticas fundamentales. Este proceso comprende tres pasos básicos. En el primero, esta técnica genera una condición de estado regular dentro del cuerpo al colocar al mismo en un campo magnético potente y seguro (30.000 veces más fuerte que el campo magnético de la Tierra). En segundo lugar, cambia el estado de orientación constante de los protones al estimular el organismo con la energía de radiofrecuencia. En tercer lugar, la estimulación de la radiofrecuencia finaliza y `oye' al cuerpo transmitir la información sobre sí mismo en esta frecuencia `resonante' especial mediante una antena diseñada para tal efecto. La señal transmitida se detecta y sirve de base en la construcción de imágenes internas del cuerpo empleando principios de ordenadores similares a los que fueron desarrollados por los rayos X, la TAC (tomografía axial computerizada) y los escáneres TC.


El sistema MRI funciona aplicando al cuerpo humano un campo magnético intenso generado por una bobina electromagnética superconductora. Cuando el cuerpo humano se expone a este campo magnético, las moléculas de agua y los tejidos se orientan siguiendo la dirección del campo. Se aplica entonces un pulso de radio-ondas con la frecuencia de resonancia apropiada, haciendo que los átomos pasen a estados excitados. Cuando el pulso decae, los átomos vuelven a su estado anterior, liberándose energía. Esta energía es detectada y empleada para generar una imagen. Aplicando campos de distinta intensidad, se pueden obtener distintas secciones anatómicas del cuerpo.

Las máquinas MRI han ganado popularidad rápidamente. Existen actualmente centenares de estas unidades funcionando en todo el mundo.

Esta tecnología tiene muchas aplicaciones en el diagnóstico y tratamiento de apoplejías y otros accidentes cerebro-vasculares.
Esta técnica MRI se llama angiografía de proyección. Cuanto mas rápido es el flujo de sangre a través de un vaso capilar, mas brillante aparece éste en la pantalla del MRI. Si un vaso sanguíneo no aparece tan brillante como debería, el flujo de sangre es anormalmente lento. Esto podría indicar la presencia de un obstáculo que está obstruyendo el paso de sangre, como en una arterioesclerosis. La ventaja de esta técnica es que el circulatorio puede ser observado desde todos los ángulos posibles, sin siquiera mover al paciente.



Los cuerpos humanos no son los únicos organismos vivos que se pueden beneficiar de las técnicas MRI. Los científicos de la compañía General Electric y el departamento de agricultura de los Estados Unidos emplean sistemas MRI para desvelar los misterios del crecimiento de las plantas. Con ayuda del MRI que tiene el centro de investigación y desarrollo de General Electric, un equipo de científicos está estudiando la estructura y funcionamiento de raíces de plantas vivas, en un intento de hallar formas de optimizar las condiciones de crecimiento. El MRI permite a los científicos observar a través de la maceta y la tierra el crecimiento de las raíces y la absorción del agua.

Fuente: html.rincondelvago.com
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com