1) La producción de grandes campos magnéticos. Al decir grandes nos referimos tanto a una gran intensidad del campo magnético como al espacio en el cual se crea el campo.
2) La fabricación de cables de transmisión de energía. Aunque éstos ya se manufacturan a partir de los superconductores convencionales (no de los nuevos superconductores cerámicos), actualmente no son competitivos comercialmente con respecto a los cables aéreos normales, a menos de que cubran una gran distancia (de cientos de kilómetros). En los casos en que las líneas de transmisión deben ser subterráneas, habría cierta ventaja económica con la utilización de los cables superconductores.
3) La fabricación de componentes circuitos electrónicos. Estos dispositivos electrónicos fueron ideados originalmente con la intención de utilizar la transición de estado normal a estado superconductor como un interruptor, mas resultaron decepcionantes con respecto a los logros alcanzados por los transistores de películas delgadas y se ha abandonado su uso en este aspecto. Este panorama puede cambiar con el descubrimiento de los nuevos materiales superconductores cerámicos. Cabe mencionar que son de gran interés los dispositivos basados en la utilización del llamado efecto Josephson (que es el efecto de "tunelamiento" conocido por la mecánica cuántica, pero de corriente de superconductividad aun en ausencia de un voltaje aplicado). Resultan superiores a otras tecnologías y tienen un gran campo de aplicación que va desde la detección de señales del infrarrojo lejano que provienen del espacio exterior, hasta pequeñísimos campos magnéticos que se producen en el cerebro humano. También la corriente Josephson a voltaje cero depende fuertemente de un campo magnético aplicado, lo que lleva a la posibilidad de tener un interesante interruptor para circuitos lógicos en las computadoras.
La aplicación más importante, en cuanto a la cantidad de material empleado, es y será por mucho tiempo la producción de campos magnéticos, que se emplean, principalmente, en los laboratorios de física con fines de investigación, y es común ver pequeños electroimanes superconductores que sirven para producir campos magnéticos con intensidades del orden de 103 Oersted. Dentro de la investigación en el campo de la física, también se utilizan electroimanes superconductores para generar campos magnéticos altamente estables, útiles en los estudios de la resonancia magnética nuclear y la microscopía electrónica de alta resolución. Son muy utilizados en las cámaras de burbujas que sirven para la detección de partículas y que requieren campos magnéticos muy intensos.
Por otro lado, se espera que los motores y generadores superconductores tendrán enormes consecuencias en lo social y económico, en unos años más, pues para su elaboración se utilizan campos magnéticos intensos. También se desea utilizar electroimanes superconductores para la levitación de trenes de transporte de pasajeros o de carga.
Es conveniente señalar las propiedades que se requieren en los superconductores comerciales:
1) La mayor temperatura crítica posible. Esto se debe a que, cuanto mayor sea, más elevada podrá ser la temperatura de operación del dispositivo fabricado, reduciéndose de esta manera los costos por refrigeración requeridos para alcanzar el estado superconductor en operación.
2) El mayor campo magnético crítico posible. Como se pretende utilizar el superconductor para generar campos magnéticos intensos, mientras mayor sea el campo magnético que se quiere generar, mayor tendría que ser el campo crítico del material superconductor.
3) La mayor densidad de corriente crítica posible. A mayor densidad de corriente crítica que la muestra pueda soportar antes de pasar al estado normal, más pequeño podrá hacerse el dispositivo, reduciéndose, de esta manera, la cantidad requerida de material superconductor y también la cantidad de material que debe refrigerarse.
4) La mayor estabilidad posible. Es muy común que los superconductores sean inestables bajo cambios repentinos de corriente, de campos magnéticos, o de temperatura, o bien ante choques mecánicos e incluso por degradación del material al transcurrir el tiempo (como ocurre en muchos de los nuevos materiales superconductores cerámicos). Así que, si ocurre algún cambió súbito cuando el superconductor está en operación, éste podría perder su estado superconductor. Por eso es conveniente disponer de la mayor estabilidad posible.
5) Facilidad de fabricación. Un material superconductor será completamente inútil para aplicaciones en gran escala si no puede fabricarse fácilmente en grandes cantidades.
6) Costo mínimo. Como siempre, el costo es el factor más importante para considerar cualquier material utilizado en ingeniería y deberá mantenerse tan bajo como sea posible.
ALGUNAS APLICACIONES DE LOS ELECTROIMANES SUPERCONDUCTORES
Se han propuesto muchas aplicaciones industriales a gran escala de los imanes superconductores. En la actualidad existen algunos métodos alternativos que emplean campos magnéticos pero, si se aplica la superconductividad en estas áreas, se espera obtener un ahorro considerable en costos de operación. En algunas otras áreas el uso de electroimanes superconductores ha hecho la idea técnica y económicamente posible.
Algunas de las aplicaciones más importantes de los electroimanes superconductores, sin que la lista pretenda ser exhaustiva, es la siguiente:
1) Aplicaciones biológicas. Se sabe desde hace mucho tiempo que los campos magnéticos intensos afectan el crecimiento de plantas y animales. Así, se han utilizado electroimanes superconductores para generar campos magnéticos intensos y estudiar sus efectos en el crecimiento de plantas y animales y, además, analizar su efecto en el comportamiento de estos últimos.
2) Aplicaciones químicas. Es un hecho conocido que los campos magnéticos pueden cambiar las reacciones químicas y ser utilizados en la catálisis.
3) Aplicaciones médicas. Se han aplicado campos magnéticos para arreglar arterias, sacar tumores y para sanar aneurismas sin cirugía. También se estudia la influencia de los campos magnéticos en las funciones vitales del cuerpo humano.
4) Levitación. Una aplicación muy importante es en el transporte masivo, rápido y económico. La idea de usar una fuerza magnética para hacer "flotar" vehículos de transporte ha estado en la mente de los científicos por casi un siglo y la posible aplicación de la superconductividad a este problema lo ha renovado y actualizado. Hay, esencialmente, dos métodos posibles para conseguir la levitación. Uno corresponde a la utilización de un sistema atractivo y el otro a un sistema repulsivo. Describiremos muy brevemente los principios de funcionamiento de cada uno.
El sistema atractivo ha sido investigado, principalmente, en Alemania y Estados Unidos. Como es sabido, la fuerza magnética entre un material ferromagnético colocado en el seno de un campo magnético y la fuente que genera al campo magnético es siempre atractiva. El peso del vehículo es sostenido por esta fuerza atractiva. Las características básicas de este sistema son:
a) el campo magnético necesario puede ser generado por electroimanes convencionales hechos de metales normales, a causa de la presencia de material ferromagnético;
b) el uso de electroimanes de metal normal requiere una pequeña brecha de alrededor de 1 cm entre el material ferromagnético y los electroimanes. Aun con un diseño óptimo, utilizando metal normal, el costo es mucho menor cuando se utilizan electroimanes superconductores;
c) la fuerza magnética aumenta cuando la brecha se hace más pequeña y disminuye cuando aumenta, lo cual significa que el sistema es inherentemente inestable, y para lograr su estabilización es necesario que tenga un mecanismo de retroalimentación que le permita regular la corriente y, por tanto, la fuerza atractiva.
Aunque no se puede hacer ninguna conclusión negativa acerca del sistema atractivo, éste presenta, al menos, dos desventajas cuando se trata de velocidades superiores a 250 km/h. La primera es la pequeña brecha en la cual debe operar. Una razón fundamental por la que el tren convencional de ruedas y rieles no puede viajar a velocidades superiores a 300 km/h es que su posición vertical tiene que ser mantenida dentro de una variación no mayor de 2 milímetros sobre una distancia de 10 metros. La segunda razón es que el sistema es intrínsecamente inestable con respecto al movimiento vertical. Estas dos desventajas, si bien no hacen imposible la operación a alta velocidad, si requieren una gran cantidad de energía eléctrica para lograr mantener una brecha del tamaño adecuado para velocidades mayores que 250 km/h. Se ha sugerido que los electroimanes de metal normal sean sustituidos por electroimanes superconductores para que sea posible construir una brecha de mucho mayor tamaño. La contraparte de este beneficio radica en la dificultad de controlar las corrientes necesarias para estabilizar la posición vertical.
En lo que se refiere al sistema de levitación por repulsión se puede decir que presenta mejores perspectivas. Este sistema funciona como una aplicación de la ley de Lenz de inducción de corrientes eléctricas al tener campos magnéticos que varían con el tiempo, en cuyo seno existe una espira de material conductor. El campo magnético que genera la corriente inducida da lugar a un campo magnético que tiene una polaridad opuesta al campo magnético original, creándose una repulsión entre ambos campos magnéticos.
Un aspecto importante del sistema repulsivo es la disipación de energía que se da en el conductor; es una pérdida por la resistencia eléctrica del material conductor. Esta disipación depende de la frecuencia de excitación y tiene un máximo para cierto valor de la frecuencia. Sin embargo, tiende a cero conforme la frecuencia de excitación crece hacia valores más grandes.
La característica más importante del sistema repulsivo, en lo que se refiere a transportación masiva, es la utilización de electroimanes superconductores para proporcionar los campos magnéticos requeridos. Los electroimanes superconductores hacen posible generar un campo magnético intenso en un volumen grande y esto tiene profundos efectos en el diseño del sistema. Los puntos sobresalientes del sistema son:
a) La brecha entre los electroimanes y el material conductor puede ser, al menos, de una magnitud mayor que para el caso atractivo. Esto es fundamental para el diseiío de operación de vehículos de alta velocidad.
b) Un campo magnético intenso, generado sobre un gran volumen por los electroimanes superconductores, puede incorporarse fácilmente a un mecanismo de propulsión y de esta manera los mecanismos de suspensión (o levitación) y los de propulsión son compatibles.
A menos que investigaciones posteriores indiquen lo opuesto, parece que no existen problemas técnicos fundamentales con este sistema. Sin embargo, se requieren algunas innovaciones técnicas antes de poder completar un diseño comercial.
El descubrimiento de materiales superconductores cerámicos con una elevada temperatura crítica hace aún más atractiva la idea de la utilización de materiales superconductores para la transportación masiva. Cuando menos ya no se requerirá enfriar a temperatura de helio líquido, bastará con la refrigeración que proporciona el nitrógeno líquido. Claro que aún sigue la búsqueda de materiales cerámicos superconductores de temperatura crítica superior a la temperatura ambiente y, si se logra hallarlos, ya no será necesaria la refrigeración del sistema, reduciéndose así los costos de construcción y operación.
5) Generación de energía. Utilización de imanes superconductores para lograr "botellas magnéticas" que sirvan para la generación de energía nuclear por fusión que no presenta problemas de desechos radiactivos, como sucede con los actuales generadores de energía nuclear por fusión.
6) Separación magnética. Ésta se aplica comercialmente para separar materiales paramagnéticos y materiales ferromagnéticos: en la industria del caolín, para separar sustancias magnéticas de la arcilla; para la limpieza magnética selectiva del carbón, o sea, separar sustancias minerales de sustancias orgánicas.
7) Limpieza de aguas contaminadas. Por medio de campos magnéticos se pueden separar las impurezas que al estar disueltas en agua quedan ionizadas y al fluir a través de un campo magnético pueden ser desviadas por éste y ser apartadas del agua.
8) Blindaje y modelaje de campos magnéticos. Puede lograrse por medio de planos superconductores que ya han sido utilizados para este fin en sistemas de producción de energía.
9) Aceleradores de mucha energía. Se han podido desarrollar electroimanes dipolares y cuadrupolares oscilantes de materiales superconductores, capaces de generar los campos magnéticos más intensos de la historia para su utilización en aceleradores de partículas de energía muy grandes.
ALGUNAS APLICACIONES EN LA ELECTRÓNICA
La primera sugerencia para utilizar la transición del estado normal al estado superconductor en la electrónica fue hecha en 1956. El dispositivo que se propuso recibió el nombre de criotrón. A continuación haremos una pequeña descripción de este dispositivo.
Consiste en un par de alambres superconductores, uno enrollado alrededor de otro. Usualmente un alambre de niobio se coloca alrededor de un alambre de tantalio, aislados eléctricamente entre sí.
El campo magnético crítico del niobio es bastante mayor que el del tantalio. Ambos alambres se encuentran inicialmente en un estado superconductor. Supongamos ahora que una corriente, I, pasa por el alambre de tantalio que, al ser superconductor, no ofrece resistencia al paso de la corriente. Si hacemos pasar una corriente IC, a través del alambre Nb, se genera un campo magnético dentro del cual el alambre de tantalio (Ta) queda inmerso. Si la corriente es suficientemente intensa se puede generar un campo magnético que lleve al tantalio a su estado normal. Si esto ocurre, aparece una resistencia eléctrica en el tantalio al paso de la corriente, reduciéndose así el valor de esa corriente. Sin embargo, el alambre de Nb puede permanecer en el estado superconductor ya que el campo magnético crítico del Nb es mayor que el del Ta para la misma temperatura. Por tanto, el valor de la corriente en el alambre del tantalio puede controlarse con una corriente menor.
El alambre de tantalio recibe el nombre de alambre de paso o paso. El alambre de niobio recibe el nombre de alambre de control, o control.
Por lo general el calibre del alambre de paso se toma lo más grande posible para así tener en él la mayor cantidad de corriente.
Al principio se utilizaron criotrones como interruptores rápidos para su posible uso en computadoras. Incluso, existen criotrones de películas delgadas. En general, hubo bastante esfuerzo dedicado al desarrollo de circuitos superconductores de criotrones. Sin embargo, a mediados de los años sesenta, estos dispositivos habían perdido ya terreno respecto a los dispositivos de transistores que funcionan a la temperatura ambiente.
La razón más importante, quizá, es que el criotrón no fue tan eficiente comparado con las versiones mejoradas del transistor. Sin embargo, con los nuevos materiales superconductores cerámicos los criotrones podrían ser de nuevo competitivos, ya que en ellos las temperaturas de refrigeración son mucho más grandes. Por otro lado, el criotrón se ha utilizado y se utiliza para controlar corrientes en circuitos de imanes superconductores.
También ocurrió que el descubrimiento del llamado efecto Josephson y el desarrollo alcanzado en el campo de los circuitos integrados trajeron como consecuencia una perspectiva espléndida de aplicaciones de la superconductividad en la electrónica.
El efecto Josephson consiste en el paso de corrientes superconductoras (pares de Cooper) a través de una unión que, normalmente y desde un punto de vista clásico, no debería dejar pasar ningún electrón. Es un fenómeno típicamente cuántico, explicable por la mecánica cuántica.
La corriente Josephson está presente aun en ausencia de un voltaje aplicado a la unión (que recibe el nombre de unión túnel). Esta corriente de voltaje cero depende fuertemente de un campo magnético aplicado. Estas características permiten disponer de un interesante interruptor para circuitos lógicos. Este efecto también se observa, desde luego, en los nuevos materiales superconductores cerámicos.
Es evidente que si tenemos pequeñas espiras de material superconductor por las que circula una corriente, se contará con información almacenada, pues la corriente permanecerá circulando en la espira sin pérdida y, como sabemos, toda corriente que circula genera un momento magnético. Si la corriente circulara en sentido contrario, el momento magnético generado sería opuesto al inicial. Estos dos sentidos de circulación pueden constituir dos estados de una célula de memoria.
Para las computadoras, el uso de dispositivos de efecto Josephson lleva a tiempos de transferencia de corriente extremadamente breves. Los tiempos de respuesta de un interruptor de efecto Josephson son de 5 a 10 picosegundos (un picosegundo es igual a 10-12 segundos).
La dificultad de la aplicación del efecto Josephson radica en la elaboración de la unión en donde se da este efecto. Dicha unión ha de construirse con capas de oxido de unos 30 angstroms y, además, las características han de ser estables ante ciclajes térmicos y almacenamiento. Sin embargo, su utilización parece muy ventajosa y polifacética.
El SQUID (dispositivo superconductor de interferencia cuántica, por sus siglas en inglés) es uno de los dispositivos superconductores más utilizados. Existen dos tipos de este dispositivo: el SQUID de corriente directa (cd) y el SQUID de radio frecuencia (rf). Son los instrumentos más sensibles que existen para medir una gran variedad de cantidades físicas: campos magnéticos, cambios espaciales de campos magnéticos, susceptibilidades magnéticas, voltajes muy pequeños y desplazamientos microscópicos.
El SQUID de corriente directa está formado por dos uniones de tipo Josephson conectadas en paralelo en un circuito de superconductores. Cuando aplicamos una pequeña corriente, I, ésta fluye a través de las uniones como una supercorriente sin ocasionar una caída de potencial, esto es, sin requerir un voltaje aplicado a través de la barrera. Sin embargo, cuando esta corriente excede cierto valor crítico, IC, se genera un voltaje V en la unión y la corriente, IC, es una función oscilatoria del flujo magnético f que atraviesa el circuito (véase la figura 19 de la sección "La superconductividad en imágenes"). El periodo de esta función es de un flujón, que es un quantum de flujo magnético, f0 = h/2e = 2.07 x 10-15 weber. La naturaleza oscilatoria de la corriente se debe a la interferencia de las dos ondas que describen los pares de Cooper en las uniones, de manera análoga a la interferencia de dos ondas electromagnéticas coherentes (o sea dos ondas de luz). Por esto, al SQUID se le llama algunas veces interferómetro.
El SQUID puede utilizarse como un magnetómetro extremadamente sensible, ya que es posible detectar un cambio de flujo, df, mucho más pequeño que un flujón, utilizando un circuito de flujo magnético bloqueado que genera una corriente en la espira acoplada. al SQUID de manera que se genera un flujo -df para mantener el flujo magnético total del SQUIDen un valor constante. El voltaje de resultante de salida es proporcional a df y éste es proporcional al campo magnético
El SQUID de radio frecuencia, es un diseño anterior al del SQUID cd. Consta de una unión Josephson incorporada a un circuito superconductor. El circuito está acoplado a la bobina de un circuito enfriado LC (bobina-condensador) que está excitado a su frecuencia de resonancia, típicamente de 30 MHZ. La amplitud del voltaje oscilante de radio frecuencia a través del resonante es periódico en el flujo magnético, con periodo de un flujón. Después de desmodular la señal de radiofrecuencia, la salida se utiliza para bloquear el flujo del SQUID, de la misma manera que en el SQUID cd. Este tipo de SQUID es mucho menos sensitivo que el SQUID cd, pero ha permanecido en el mercado hasta muy recientemente.
Aunque, por ahora, es demasiado pronto para que estos dispositivos tengan una gran repercusión en aplicaciones prácticas, dentro de la próxima década se espera un gran auge, tanto en la variedad de estos dispositivos superconductores como en la variedad de sus aplicaciones. Una de las más novedosa es en biomagnetismo, donde se utilizan para detectar espeacialmente las fuentes de los pequeñísimos campos magnéticos generados por el cerebro.
Para finalizar, existen computadoras que tienen muchos elementos y dispositivos superconductores y que son mucho más rápidas que las construidas con materiales normales. En general las utilizan los departamentos de defensa de las grandes potencias para procesar la información de los satélites espías sobre un posible ataque con proyectiles. Se requiere procesar muchísima información sobre las trayectorias de los proyectiles para repeler un ataque y dar una respuesta rápida y contundente. También se utilizan para detectar y cuantificar los movimientos militantes cotidianos de todos los países del mundo. Desafortunadamente el mundo científico todavía no tiene acceso de manera plena a estas computadoras para realizar trabajos de investigación.
En México se han dado ya los primeros pasos para entrar a la era de los nuevos materiales superconductores cerámicos de alta temperatura crítica que ofrecen tantas aplicaciones pacíficas para el mejoramiento de nuestras condiciones nacionales de vida. Sin embargo, el esfuerzo deberá no sólo mantenerse sino también incrementarse.
Fuente: bibliotecadigital.ilce.edu.mx
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com/
Fuente: bibliotecadigital.ilce.edu.mx
Asignatura: C.R.F.
Ver: http://deividorozco.blogspot.com/
No hay comentarios:
Publicar un comentario